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The principle of acoustic reciprocity can be applied in practice to estimate the sound
radiation of a vibrating surface, from an inverse measurement of the Green function. This
principle is especially useful in evaluating and ranking the sound radiation from individual
vibrating components of a complex mechanical system. Usually, a blocked pressure
assumption is needed in order to simplify the formulation of the reciprocity technique. This
paper examines the validity of the blocked pressure hypothesis in the context of the
reciprocity method, and suggests a &&blocked pressure criterion'' to rigorously quantify the
impact of this hypothesis on the sound radiation prediction. This criterion is tested
numerically on a system consisting of two coplanar, simply supported thin ba%ed plates
that are mechanically uncoupled. It is shown that the numerical results support the
conclusions obtained from the blocked pressure criterion.

( 2001 Academic Press
1. INTRODUCTION

The prediction of the acoustic response from a vibrating body is of interest in the reduction
of structure-borne noise. In many practical situations, it is desirable to estimate the sound
radiated by a speci"c component of a complex mechanical system, and rank the various
individual components in terms of their sound radiation. Such an analysis allows the most
noise-contributing sources to be identi"ed, and e$cient noise reduction measures to be
implemented.

Numerical methods such as the "nite element method or the boundary element method
are commonly used to predict the acoustic radiation of vibrating structures. However, for
complex mechanical systems, these methods are not well adapted to the estimation of the
sound radiation from individual components of the system. On the other hand,
experimental methods such as the reciprocity method have been recently developed to
speci"cally achieve this goal. For a structure which is part of a complex mechanical system,
it is possible to calculate the exact acoustic response using the surface velocity "eld and the
Green function. It has been shown that the principle of acoustic reciprocity can be used to
provide an estimate of the Green function. Developed originally by Helmholtz [1] for
acoustics, the principle of reciprocity has been extended to elastic solids by Rayleigh and
Lyamshev [1, 2]. The required Green function is calculated from inverse measurements,
using a controlled sound source insonifying the structure (when the structure is passive and
assumed to be in a rigid state) and measuring the resulting sound pressure "eld on the
0022-460X/01/340669#16 $35.00/0 ( 2001 Academic Press



670 J.-M. MENCIK E¹ A¸.
surface of the structure considered. The measured Green function is then used together with
the experimentally determined vibration of the structure (when active) to derive the sound
pressure radiated at a given location in space. This approach is correctly derived by Holland
et al. [3]; some general applications are proposed by Mason et al. [4, 5]. An extension of the
principle of reciprocity to mechano-acoustical systems is proposed by ten Wolde [6].

In practice, a basic assumption when measuring the Green function using an inverse
measurement is that the measured surface acoustic pressure is not a!ected by the dynamic
response of the global mechanical system excited by the acoustic point source. Such
a surface acoustic pressure is called &&blocked pressure'', because the structural motion is
considered as being blocked [3]. The validity of this hypothesis should obviously be
strongly dependent on the mechanical properties of the structure, such as the mass, sti!ness
and damping. However, the blocked pressure hypothesis has not been thoroughly examined
in the past, in the context of the reciprocity method.

The aim of this paper is to propose a criterion called &&blocked pressure criterion'' to verify
the applicability of the acoustic reciprocity method when the blocked pressure hypothesis is
done.

In section 1, the principle of acoustic reciprocity is reviewed and an exact expression of
the sound pressure radiated by a vibrating surface is derived from the reciprocity technique.
In section 2, the principle of reciprocity is derived for an elastic solid medium from the
dynamic equilibrium equations. The theoretical developments involved in these two
preliminary sections are used to derive an analytical formulation of an original blocked
pressure criterion in section 3. This criterion is tested numerically on a system consisting of
two coplanar, simply supported thin ba%ed plates that are mechanically uncoupled. It is
shown that the numerical results support the conclusions obtained from the criterion.

2. THE PRINCIPLE OF ACOUSTIC RECIPROCITY

In this section, the principle of acoustic reciprocity is rigorously derived for a #uid
subjected to di!erent boundary conditions and excitation sources. The exact, direct
expression of the acoustic "eld radiated by a vibrating surface with a given surface velocity
"eld is recalled. An alternative expression for the same acoustic "eld is also proposed, based
on the principle of reciprocity. These expressions will be used in section 3 of this paper to
support the development of the blocked pressure criterion for the principle of reciprocity.

A #uid domain X bounded by a surface SX , as shown in Figure 1, contains a set of
three-dimensional bodies described by their closed surfaces S

k
. The #uid domain also

contains sound sources q
i
radiating at the angular frequency u. A unit normal vector

n pointing into X is de"ned on the bounding surfaces SX and S
k
.

In the following, two di!erent independent acoustic "elds, labelled (1) and (2), are
considered in X, depending on the selection of active sound sources q

i
and boundary

conditions over S
k
. The superscripts identify the state (1) or (2) for each variable. The sound

pressure is expressed in each case by the Helmholtz equation for a non-dissipative #uid,

State (1): (+2#k2)pL (1)"!juo
0
qL (1) , (1)

State (2): (+2#k2)pL (2)"!juo
0
qL (2) , (2)

where k is the wavenumber, k"u/c, c is the speed of sound, j2"!1, o
0
is the #uid density,

and qL (1) and qL (2) designate acoustic sources in states (1) and (2). The symbol' denotes
complex variables. Equations (1) and (2) are multiplied by pL (2) and pL (1), respectively, and



Figure 1. Volume of #uid enclosed in a surface SX , containing structures S
k

and sound sources q
i
.
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they are then integrated on the volume X and subtracted to give

PPP
X

(+2pL (1)pL (2)!+2pL (2)pL (1)) dX"!juo
0 PPP

X

(qL (1)pL (2)!qL (2)pL (1)) dX . (3)

The Green theorem is applied to the left-hand side of equation (3),

! PP
+Sk`SX

A
L
Ln

pL (1)pL (2)!
L
Ln

pL (2)pL (1)BdX"!juo
0 PPP

X

(qL (1)pL (2)!qL (2)pL (1)) dX , (4)

where L/Ln represents the derivative in the direction of the unit normal vector n. In the
limiting case where SX is a sphere of in"nite radius Dr

SX
DPR, the Sommerfeld radiation

condition applies,

lim
Dr

SX D?=
GPP

SX

A
L
Ln

pL (1)pL (2)!
L
Ln

pL (2)pL (1)BdXH"0. (5)

The pressure gradient in relationship (4) is expressed as a function of the surface velocity on S
i
,

L
Ln

pL "!juo
0
wL , (6)

where w is the normal component of the surface velocity. A general formulation of the
principle of reciprocity applied to a #uid medium results,

PP
+Sk

(wL (1)pL (2)!wL (2)pL (1)) dS"PPP
X

(!qL (1)pL (2)#qL (2)pL (1)) dX . (7)
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The volume source con"gurations qL (1) and qL (2) are now speci"ed. It is assumed that there is
no sound source in state (1), that is qL (1)"0, and there is one single-point source at location
r
0

in state (2), qL (2)"QK (2)d (r!r
0
). Applying equation (7) results in

PP
+Sk

(wL (1)pL (2)!wL (2)pL (1)) dS"QK (2)pL (1)(r
0
). (8)

The sound pressure "eld radiated by the vibrating surfaces S
k
in state (1) can therefore be

expressed as

pL (1) (r
0
)"+

k

pL (1)
k

(r
0
), (9)

where pL (1)
k

, the contribution of the surface S
k
to the total pressure "eld radiated by all the

surfaces is

pL (1)
k

(r
0
)"

1

QK (2)PP
Sk

(wL (1)pL (2)!wL (2)pL (1)) dS . (10)

The volume #ow QK (2) injected in state (2) by the point source in the #uid is

QK (2)"PPP
X

qL (2) dX . (11)

If it is now assumed that wL (2)"0, the contribution is simply [3}5]

pL (1)
k

(r
0
)"PP

Sk

pL (2)
QK (2)

wL (1)dS. (12)

Equation (12) suggests a simple experimental procedure to estimate the sound "eld of each
individual vibrating surface S

k
at location r

0
using the principle of reciprocity: (1) the

transverse velocity wL (1) is measured over the surface S
k
when it is active (corresponding to

state (1)); (2) an acoustic point source of strength QK (2) is introduced in the #uid domain at
point r

0
with the surface S

k
inactive (corresponding to state (2)) and the resulting sound

pressure pL (2) is measured over S
k
; (3) the sound pressure radiated by S

k
at point r

0
in state (1)

is estimated using equation (12). It is to be noted that the application of equation (12)
requires that S

k
is perfectly rigid in state (2) (wL (2)"0). The validity of this assumption is

investigated in detail in the following. In a "rst instance, the principle of reciprocity is
extended to an elastic solid in the next section.

3. THE PRINCIPLE OF RECIPROCITY APPLIED TO AN ELASTIC SOLID

The principle of reciprocity applied to an elastic solid medium is derived in this section
from the equations of dynamic equilibrium.

A three-dimensional elastic solid < with a bounding surface S is considered, as shown in
Figure 2. It is submitted to various harmonic disturbing forces with angular frequency u:
point forces f

P
, line forces f

L
, surface forces f

S
, volume forces f

V
, moments m.



Figure 2. Description of the structure and disturbing forces.
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For Hookean solids, the stress tensor r is related to the strain tensor e by

r("C(1#jg)e( , (13)

where C and g are the tensor of the elastic constants and the structural loss factor
respectively. Assuming that a modal basis is available, the displacement of the structure can
be expressed as

u"
=
+
i/1

u
i
"

=
+
i/1

U
i
X

i
, (14)

where the X
i
are the eigenfunctions and U

i
are the modal displacements.

Again, two distinct independent states (1) and (2) are considered, corresponding to two
distinct excitation con"gurations. Virtual works of internal and external forces in state (1)
along virtual displacement du(1)"u(2) corresponding to state (2) are detailed in the
following.

The work of the distributed inertia forces in state (1) along virtual displacement
du(1)"u(2) in state (2) takes the following form (where the orthogonality of the
eigenfunctions X

i
is invoked):

d=(12)
I

"

=
+
i/1

PPP
V

!o
S A

L2

Lt2
u(1)B )u(2)

i
d<"u2

=
+
i/1

o
S
U(1)

i
U(2)

i PPP
V

X2
i
d<, (15)

where o
S

is the mass density of the solid. The above result can be expressed as

d=(12)
I

"u2+
i

U(1)
i

M*
i
U(2)

i
, (16)

where the modal mass M*
i

is de"ned by

M*
i
"PPP

V

o
S
X2

i
d< . (17)
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The work of the elastic forces in state (1) along the virtual displacement du(1)"u(2) in state
(2) is

d=(12)
E

"!d;(12)"!

=
+
i/1

L
LU(1)

i
A PPP

V

1

2
(eTCe)(1)d<BU(2)

i
, (18)

where ; is the strain energy in the structure. Introducing the strain}displacement
relationship e"Lu and assuming the orthogonality property :::

V
(e*

i
)TCe*

j
d<"0 for iOj,

where e*
i

is the modal strain tensor,

e*
i
"LX

i
, (19)

equation (18) is expressed as

d=(12)
E

"!+
i

U(1)
i

K*
i
U(2)

i
, (20)

where K*
i

is the modal sti!ness,

K*
i
"PPP

V

(e*
i
)TCe*

i
d<. (21)

The work of the damping forces in state (1) along the virtual displacement du(1)"u(2) in
state (2) is

d=(12)
D

"!+
i

L
Lt

U(1)
i

C*
i
U(2)

i
, (22)

where C*
i

is the modal damping [8],

C*
i
"

K*
i
g

u
. (23)

The work done by the external forces in state (1) along virtual displacement du(1)"u(2) in
state (2) is given by

d=(12)
F

"+ f (1)
P

) u(2)#P
L

f (1)
L

d¸ ) u(2)#PP
S

f (1)
S

dS ) u(2)#PPP
V

f (1)
V

d< ) u(2)

#+m(1) ) (+]u)(2) . (24)

The virtual work principle states that

d=(12)
I

#d=(12)
E

#d=(12)
D

#d=(12)
F

"0. (25)

In the same manner, if one considers the work done by external and internal forces in state
(2) along the virtual displacement du(2)"u(1) in state (1), the virtual work principle states
that

d=(21)
I

#d=(21)
E

#d=(21)
D

#d=(21)
F

"0. (26)
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Equations (16) and (20) show that d=(12)
I

"d=(21)
I

and d=(12)
E

"d=(21)
E

; similarly,
d=(12)

D
"d=(21)

D
. Therefore, the subtraction of equations (25) and (26) results in

d=(12)
F

"d=(21)
F

, (27)

that is, the work exerted by external forces in state (1) along the virtual displacement
du(1)"u(2) in state (2) is equal to the work exerted by external forces in state (2) along the
virtual displacement du(2)"u(1) in state (1). The principle of reciprocity for an elastic solid is
well known, and states that for a concentrated force, the ratio of the response at an arbitrary
location to the applied force is unchanged when the force location and the response location
are permuted.

4. DEVELOPMENT OF THE BLOCKED PRESSURE CRITERION

4.1. THEORETICAL ANALYSIS

The pressure radiated by a set of vibrating surfaces was derived in section 1 and is given
by the exact expression provided by relationship (10). For practical applications using the
principle of acoustic reciprocity [3}6], state (1) assumes that the mechanical system
operates in its normal condition, that is, the vibrating surfaces of the system are active and
they radiate in a #uid without sound sources. The objective here is to derive the pressure
"eld created by a given individual vibrating surface which belongs to the set of vibrating
surfaces. In state (2), the whole mechanical system is passive, the sound "eld is created by an
acoustic point source in the volume and the resulting sound pressure is calculated on the
surface of the structure considered. Equation (12) can then be used to estimate the pressure
"eld radiated by the surface considered. This expression is valid if the velocity "eld of the
surface is assumed to be zero in state (2). However, in a real situation, the #exibility of the
mechanical system induces a non-zero surface velocity in response to the point source. This
is not taken into account by equation (12), but for many applications this approximation
would still yield accurate values.

This section uses results presented in the two previous sections to develop a criterion to
precisely evaluate the di!erence between the approximate sound pressure "eld calculated by
equation (12) and the exact sound pressure "eld calculated by equation (10). The criterion
applies here to the case of an individual structure which is mechanically uncoupled from
other structures (that is, no power is transmitted between structures through mechanical
junctions).

Let us consider an individual structure k, described by its surface S
k
. The approximate

equation (12) can be derived from the exact equation (10) provided that the following
condition is satis"ed:

K PP
Sk

wL (2)pL (1)dS K@K PP
Sk

wL (1)pL (2)dS K . (28)

Dividing both sides by ju yields

K PP
Sk

uL (2)pL (1)dS K@K PP
Sk

uL (1)pL (2)dS K , (29)
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where uL is the normal displacement to the surface. Expression (29) states that the work of the
surface acoustic pressures in state (1) along the displacement in state (2) is negligible
compared to the reciprocal e!ect. Assuming complex notation, this last equation is written
as

Dd=K (12)
A

D@Dd=K (21)
A

D , (30)

where d=K
A

denotes the work of surface acoustic pressures. On the other hand, the principle
of reciprocity given by equation (27) and applied to an the individual structure k states that
in the present cases,

d=K (12)
M

#d=K (12)
A

"d=K (21)
A

, (31)

where d=K
M

denotes the work of the mechanical forces applied to the structure. In our case,
mechanical forces exist only in state (1), since state (2) corresponds to an acoustic
point source excitation. The term d=K (12)

A
in expression (31) represents the work of

surface acoustic pressures radiated by all the vibrating surfaces, calculated on S
k
. It is also

worth remembering that the studied structure S
k

is mechanically uncoupled from its
surroundings.

Combining relationships (30) and (31) results in

Dd=K (12)
A

D@Dd=K (12)
M

#d=K (12)
A

D. (32)

Applying equation (25) to introduce the works of the distributed inertia forces, the internal
elastic forces and the dissipative forces, expression (32) becomes

Dd=K (12)
A

D@Dd=K (12)
I

#d=K (12)
E

#d=K (12)
D

D . (33)

The various terms of expression (33) are now developed; the work of the acoustic disturbing
pressures in state (1) along the displacement in state (2) is expressed by

d=K (12)
A

"!PP
Sk

uL (2)pL (1) dS
k
"!PP

Sk

+
i

(UK Sk
i
)(2) (XSk

i
(r
k
) )n)pL (1)(r

k
) dS

k
, (34)

where XSk
i

and USk
i

are the eigenfunctions and modal displacements of the structure
S
k
respectively. In the absence of any volume source, the surface acoustic pressure pL (1)(r

k
) is

expressed by the Helmholtz}Huygens equation,

pL (1) (r
k
)"!PP

S{

G(r
k
, r@)

L
Ln

pL (1) (r@) dS @"juo
0 PP
S{

G (r
k
, r@)wL (1) (r@) dS @, (35)

where G is the Green function, which is the solution of the inhomogeneous Helmholtz
equation, and which satis"es the homogeneous Neumann condition on S@ [8], that is

L
Ln

G"0 on S@, (36)

where S@"+S
k

is the total surface of the mechanical system, and r
k

and r@ are position
vectors, describing S

k
and S @ respectively. Expanding wL (1) (r@) in relationship (35) over the
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eigenfunctions of S@ and inserting equation (35) into equation (34) gives

d=K (12)
A

"+
i

(UK Sk
i
)(2)o

0
u2+

j

+
p
PP
Sk

PP
Sp

(XSk
i

(r
k
) ) n)G(r

k
, r

p
) (UK Sp

i
)(1)(XSp

j
(r
p
) ) n) dS

k
dS

p
, (37)

that is,

d=K (12)
A

"+
i

(UK Sk
i

)(2)A!ju +
j

+
p

ZSkSp
ij

(UK Sp
j

)(1)B, (38)

where ZSkSp
ij

is the intermodal radiation impedance of mode j of S
p

on mode i of S
k
,

ZSkSp
ij

"juo
0 PP

Sk

PP
Sp

(XSk
i

(r
k
) ) n)G(r

k
, r

p
)(XSp

j
(r
p
) ) n) dS

k
dS

p
. (39)

Inserting the expressions of the work of distributed inertia forces, internal elastic forces and
damping forces given by expressions (16), (20) and (22), equation (33) "nally becomes

K+
i

(UK Sk
i
)(2)A!ju +

j

+
p

ZSkSp
ij

(UK Sp
j

)(1)BK@K+
i

(UK Sk
i
)(2)(!u2(MSk

i
)*#(KSk

i
)*(1#jg

Sk
)) (UK Sk

i
)(1) K ,

(40)

where (MSk
i

)*, (KSk
i

)* and g
Sk

are the modal mass, the modal sti!ness and the loss factor of
the structure S

k
respectively. Using the expression of the modal mass given by expression

(17), the above condition is written as

Ku+
i

(UK Sk
i
)(2) +

j

+
p

ZSkSp
ij

(UK Sp
j

)(1) K

@KoSk
+
i

(UK Sk
i
)(2)A PPP

V

(XSk
i
)2d<B (!u2#(uSk

i
)2(1#jg

Sk
)) (UK Sk

i
)(1) K , (41)

that is,

A
Sk

(u)"
Du +

i
(UK Sk

i
)(2) +

j
+

p
ZSkSp

ij
(UK Sp

j
)(1) D

Do
Sk

+
i
(UK Sk

i
)(2) ( :::

V
(XSk

i
)2d<) (!u2#(uSk

i
)2(1#jg

Sk
))(UK Sk

i
)(1) D

@1, (42)

where uSk
i
"J(KSk

i
)*/(MSk

i
)* is the angular natural frequency of mode i for the structure S

k
.

Equation (42) furnishes a criterion for the blocked pressure approximation in the principle
of reciprocity. The quantity A

Sk
essentially depends on structural parameters and on the

radiation impedance coe$cients. For complex systems, the modal displacements, modal
masses and angular natural frequencies can be calculated from a "nite element analysis. The
intermodal radiation impedance characterizes the coupling that occurs through the #uid,
between each individual structure S

k
and all structures (including S

k
). If one states that the

geometry of S
k
remains locally approximately plane, the Green function for a semi-in"nite

medium [8] may be used. The main advantage of the proposed formulation is then to avoid



Figure 3. Test case: two coplanar, simply supported, mechanically uncoupled thin ba%ed plates.
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characterizing the Green function from the studied structure to the sound point source qL (2),
which is often di$cult to calculate because of the complexity of the vibro-acoustic system.

An approximate blocked pressure criterion can be derived from equation (42) for the
structure S

k
: at the angular natural frequency uSk

i
and considering the corresponding

vibrational mode i, one can assume that the contribution of the other modes is negligible;
one can also neglect the in#uence of the surrounding surfaces (light #uid coupling
hypothesis). Equation (42) then becomes

B
Sk

(uSk
i
)"

DZSkSk
ii

D
uSk

i
o
Sk

g
Sk

:::
V

(XSk
i
)2d<

@ 1. (43)

In the following, criterion (42) and its approximate version (43) are tested on two coplanar
plates radiating in a semi-in"nite #uid.

4.2. APPLICATION TO TWO SIMPLY SUPPORTED THIN BAFFLED PLATES

The blocked pressure criterion formulated in the previous section is numerically tested on
the system shown in Figure 3. Two coplanar, adjacent, #exural, simply supported, identical
thin ba%ed plates S

1
and S

2
are assumed, with dimensions l

x
"0)5 m, l

y
"0)6m, thickness

h"2]10~3 m, material properties E"2]1011 Pa, v"0)3, o
S
"7800 kg/m3, and loss

factor g"2]10~3. The two plates are mechanically uncoupled (no power is transmitted
through the junction). They are excited in state (1) by concentrated disturbing forces
F (1)
S1

"1N at (lx/5, ly/6) on plate S
1

and F (1)
S2

"2N at (lx/2, ly/2) on plate 2. The transverse
displacements of the two plates in state (1) are denoted as u (1)

S1
and u (1)

S2
respectively. In state

(2), the mechanical system is passive and is excited by a point source, Q(2) at r
0
"(1)5 m,

0)9 m, 1)5 m).
The sound pressure radiated by the plate S

1
at r

0
is calculated using both the exact and

the approximate expression of the principle of acoustic reciprocity, and the blocked
pressure criterion is tested for this system.

4.2.1. Plates Radiate in Air

In a "rst case, the two plates radiate in air (sound speed c"330 m/s, density
o
0
"1 kg/m3). The dynamic response of each plate to the point force excitations in state (1)

and acoustic excitation in state (2) is detailed in Appendix A. The exact sound pressure



Figure 4. Sound pressure radiated by plate S
1
, calculated with the principle of acoustic reciprocity in case of

light #uid loading: **, approximate; - - - - -, exact.
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MpL (1)
1

N
ex

radiated by plate S
1
and its approximation MpL (1)

1
N
ap

are derived from the principle of
acoustic reciprocity and the blocked pressure assumption in Appendix B. These sound
pressures are given by equations (10) and (12) respectively. The results are compared in
Figure 4.

Each peak value for both curves is indicated with an arrow. For a speci"c mode, the
peaks may correspond to slightly di!erent frequencies for the two cases due to the #uid
loading e!ect (equations (B5) and (B6) of Appendix B). Due to the light #uid loading, the
main di!erences between exact and approximate sound pressures are restricted to
frequencies close to the natural frequencies of plate S

1
. The largest di!erence (20 dB)

between the two curves is obtained at the "rst resonance (33 Hz). The typical discrepancies
for peak values are of the order of 5}10 dB. Consequently, the blocked pressure criterion is
violated at the natural frequencies, the dynamic response of the mechanical system to the
point source excitation is important and neglecting this contribution in equation (12) yields
an erroneous estimate of the radiated pressure.

The quantity A
S1

establishing the blocked pressure criterion (equation (42)) is plotted in
Figure 5.

The term A
S1

is much larger than unity at resonance, and usually much smaller than unity
o! resonance, which is consistent with the observations of Figure 4. The term A

S1
is

therefore an appropriate indicator of the blocked pressure approximation.
One can also calculate the term B

S1
establishing the approximate blocked pressure

criterion (equation (43)) at the natural frequencies of plate S
1
. The results are listed in

Table 1.
As expected, the quantity B

S1
succeeds in predicting the accuracy of the blocked pressure

assumption. Because the modal coupling is neglected, one remarks that this approximate
quantity strongly overestimates the term A

S1
from the "rst to the third natural frequency of

the plate S
1
. In case of light #uid loading, it appears that the use of the approximate blocked

pressure criterion is advantageous.



Figure 5. Plot of the term A
S1

establishing the blocked pressure criterion in case of light #uid loading.

TABLE 1

<alues of the term B
S1

establishing the approximate blocked pressure criterion in case of light
-uid loading

Modes of plate S
1

1}1 1}2 2}1 2}2 1}3 3}1 2}3 3}2 3}3
Natural frequencies (Hz) 33 75 93 134 143 191 202 232 301
B
S1

50)4 14)5 9)8 4)2 3)2 1)7 1)5 1)2 0)6
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4.2.2. Plates Radiate in=ater

In a second case, the two plates radiate in water (sound speed c"1460 m/s, density
o
0
"1000 kg/m3). As in the previous case, the exact sound pressure MpL (1)

1
N
ex

radiated by
plate S

1
and its approximation MpL (1)

1
N
ap

are plotted (Figure 6).
The two curves do not "t over the frequency range (20}200 Hz): the approximate

sound pressure strongly overestimates the exact sound pressure, which means that the
blocked pressure assumption is violated in this case. Due to heavy #uid loading, the
acoustic pressure generated by the vibration of the mechanical system strongly participates
in the measured surface acoustic pressure for state (2).

The quantity A
S1

establishing the blocked pressure criterion (equation (42)) is plotted in
Figure 7.

As expected, the term A
S1

is not negligible compared to unity in the frequency range
(20}200 Hz). The blocked pressure criterion (equation (42)) is in good agreement with the
results of Figure 6. The use of the blocked pressure assumption (equation (12)) is strictly
erroneous.



Figure 6. Sound pressure radiated by plate S
1
, calculated with the principle of acoustic reciprocity in case of

heavy #uid loading: **, approximate; - - - - -, exact.

Figure 7. Plot of the term A
S1

establishing the blocked pressure criterion in case of heavy #uid loading.
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Due to the strong #uid-structure coupling, the resonance of the vibro-acoustic system is
not located around natural frequencies of the structure, as was observed previously in the
case of light #uid loading: the use of the approximate blocked pressure criterion (equation
(43)) is obviously not appropriate in this case.
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5. CONCLUSION

The principle of acoustic reciprocity was used to derive an exact expression for the sound
pressure radiated by an individual vibrating component located in a complex mechanical
system. For a component mechanically uncoupled from the rest of the system, a blocked
pressure criterion was developed. An approximate one was also expressed at a given natural
frequency of the structure, when the modal coupling is neglected. The criterion indicates in
which circumstances the usual reciprocity technique can be used to estimate the radiated
sound pressure from the vibrating component. The criterion was numerically tested in the
case of two coplanar, simply supported, thin ba%ed plates; it succeeds in evaluating
the accuracy of the usual reciprocity technique in two cases: (1) in case of light #uid loading,
the blocked pressure assumption is violated around structural resonance, the use of the
approximate criterion seems to be advantageous; (2) in case of heavy #uid loading,
the criterion states that the usual reciprocity technique introduces erroneous values in the
frequency range studied.
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APPENDIX A: FORCED RESPONSE OF TWO COPLANAR, SIMPLY SUPPORTED
THIN BAFFLED PLATES

The transverse displacement "elds u
S1

and u
S2

of the two plates are derived in state (1): the
complex displacements of each structure are expressed as modal series:

uL (1)
S1
"+

i

(UK S1
i

)(1)XS1
i

, uL (1)
S2
"+

i

(UK S2
i

)(1)XS2
i

, (A1, A2)

where XS1
i

and XS2
i

designate the plate eigenfunctions; under the assumption of pure
bending, the eigenfunctions have a simple analytical expression [7]. The modal
displacements (UK S1

i
)(1) and (UK S2

i
)(1) can be found from the following equations of dynamic

equilibrium.
For plate S

1
:

(!u2(MS1 )*#(KS1)*(1#jg
S1

))(U) S1)(1)"(F*
S1

)(1)!juZS1S1 (U) S1)(1)!juZS1S2 (U) S2)(1) ,

(A3)
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where (F*
S1

)(1) is the modal force vector on plate S
1
, ZS1S1 and ZS1S2 are modal radiation

impedance matrices from S
1

to S
1

and from S
2

to S
1

respectively (equation (39)). The
radiation impedance matrices account for the acoustic loading of S

1
that results from the

dynamic responses of both S
1

and S
2
. The calculation of ZS1S1 and ZS1S2 is performed

numerically by discretizing the plates into 10]12 elements.
Similarly, for plate S

2
:

(!u2(MS2)*#(KS2)* (1#jg
S2

)) (U) S2)(1)"(F*
S2

)(1)!juZS2S2(U) S2)(1)!juZS2S1 (U) S1)(1) ,

(A4)

The solution of the system of equations (A3) and (A4) is straightforward:

(U) S1)(1)"(AS1#u2ZS1S2 (AS2)~1ZS2S1)~1 ((F*
S1

)(1)!juZS1S2(AS2)~1(F*
S2

)(1)), (A5)

(U) S2)(1)"(AS2#u2ZS2S1 (AS1)~1ZS1S2)~1((F*
S2

)(1)!juZS2S1 (AS1)~1(F*
S1

)(1)), (A6)

with

AS1"!u2 (MS1 )*#(KS1)*(1#jg
S1

)#juZS1S1 , (A7)

AS2"!u2 (MS2 )*#(KS2)*(1#jg
S2

)#juZS2S2 . (A8)

The response of the two plates in state (2) can be obtained from these expressions with the
following changes and substitutions:

(F*
S1

)(2)"!juo
0
Q(2)PP

S1

XS1
i

GdS
1
, (F*

S2
)(2)"!juo

0
Q(2) PP

S2

XS2
i

G dS
2

where G is the Green function for a semi-in"nite medium [8], which satis"es the
homogeneous Neumann condition on the plane z"0,

G(r
1
, r

0
)"

e~+kD r
1~r

0
D

2nDr
1
!r

0
D
. (A9)

APPENDIX B: SOUND PRESSURE RADIATED BY PLATE S1

In this section, the exact sound pressure MpL (1)
1

N
ex

radiated by plate S
1
, and its

approximation MpL (1)
1

N
ap

derived from the principle of acoustic reciprocity are analytically
derived. These sound pressures are given by equations (10) and (12) respectively.

The location of the point source de"ned in state (2) is represented by r
0
, and corresponds

to the location at which the radiated sound pressure is calculated in state (1). The
calculation of MpL (1)

1
N
ex

(r
0
), equation (10), requires that pL

1
and pL

2
be determined over S

1
. The

sound pressure pL (1) (r
1
) is given by equation (35):

pL (1) (r
1
)"juo

0
+

p/1,2
PP
Sp

G(r
1
, r

p
) wL (1) (r

p
) dS

p
, (B1)

where r
1

and r
2

describe surfaces S
1

and S
2

respectively. The sound pressure pL (2)(r
1
) takes

into account the contribution of the point source and the radiation of the entire mechanical
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system,

pL (2)(r
1
)"juG (r

1
, r

0
)QK (2)#juo

0
+

p/1,2
PP
Sp

G(r
1
, r

p
) wL (2) (r

p
) dS

p
, (B2)

where G is given by equation (A9).
Hence

1

QK (2) PP
S1

wL (2)pL (1)dS
1
"!

u2

QK (2)
+
i

(UK S1
i

)(2)+
j

+
p/1,2

ZS1Sp
ij

(UK Sp
j

)(1), (B3)

where ZS1Sp
ij

is given by equation (39). Similarly:

1

QK (2) PP
S1

wL (1)pL (2)dS
1
"!u2o

0
+
i

(UK S1
i

)(1) PP
S1

(XS1
i

(r
1
) )n)G(r

1
, r

0
) dS

1

!

u2

QK (2)
+
i

(UK S1
i

)(1) +
j

+
p/1,2

ZS1Sp
ij

(UK Sp
j

)(2). (B4)

Finally, the exact sound pressure MpL (1)
1

N
ex

(r
0
) can be expressed as follows:

MpL (1)
1

N
ex

(r
0
)"!u2o

0
+
i

(UK S1
i

)(1)PP
S1

(XS1
i

(r
1
) ) n)G(r

1
, r

0
) dS

1

!

u2

QK (2)
+
i

(UK S1
i

)(1) +
j

+
p/1,2

ZS1Sp
ij

(UK Sp
j

)(2)#
u2

QK (2)
+
i

(UK S1
i

)(2) +
j

+
p/1,2

ZS1Sp
ij

(UK Sp
j

)(1).

(B5)

The "rst term on the right-hand side of equation (B5) represents the pressure radiated by S
1
,

assuming that the other surfaces are not radiating. The sum of the two last terms is not
necessarily zero. This would hold if S

2
would not exist. These two last terms account for the

e!ect of S
2

on the sound radiation characteristics of S
1
.

The sound pressure MpL (1)
1

N
ap

(r
0
) given by the principle of acoustic reciprocity and the

blocked pressure assumption is derived from equation (12):

MpL (1)
1

N
ap

(r
0
)"!u2o

0
+
i

(UK S1
i

)(1) PP
S1

(XS1
i

(r
1
) ) n)G(r

1
, r

Q
) dS

1

!

u2

QK (2)
+
i

(UK S1
i

)(1) +
j

+
p/1,2

ZS1Sp
ij

(UK Sp
j

)(2) . (B6)

The surface integrals in equations (B5) and (B6) are done numerically by discretizing S
1
into

10]12 elements.
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